Loading prices...

Register/Sign in
ScrapMonster
Sell Your Junk CarGet an instant quote for your car on ScrapMonster.com
E-waste Recycling August 01, 2017 08:30:31 AM

Who Will Clean Up Silicon Valley’s Growing Heap of Electronic Waste?

Waste Advantage
ScrapMonster Author
Unlike ordinary household trash, e-waste contains heavy metals and hazardous chemicals.

Who Will Clean Up Silicon Valley’s Growing Heap of Electronic Waste?

SEATTLE (Waste Advantage): Last April, Apple released its 58-page Environmental Responsibility Report, an ecological “progress report” for the 2016 fiscal year, which boasted of a number of sustainability and safety initiatives under the high-profile leadership of Lisa Jackson, a former Environmental Protection Agency administrator. However, a subsequent report published by Vice’s technology vertical Motherboard found that Apple had instructed third-party recyclers to shred its old products, rendering them ineligible for reuse or repurposing, even when stored data could be safeguarded without destruction of the hardware. Apple’s shred-agreement policies offer a telltale glimpse into a burgeoning environmental issue: electronic waste. The years 2014 and 2015 produced approximately 41 million tons of e-waste each (less than one-sixth of the e-waste in 2014 were estimated to have been recycled); projections for 2017 approach 50 million tons.

Unlike ordinary household trash, e-waste contains heavy metals and hazardous chemicals; smartphones use lead, mercury, and brominated flame retardants, whose toxicity and lack of biodegradability have long threatened the health of humans, animals, and the environment. Waste also requires the mining of “conflict minerals” (coltan, wolframite, cassiterite, and gold), whose funding of the Congolese civil war, for example, has long been documented and which are found in smartphones and laptops. Furthermore, as these minerals’ finite supply attenuates, miners must look to deep-sea alternatives.

“Coltan is needed for the antennas on [smartphones] to actually get those WiFi signals . . . and there really aren’t that many sources of it around the world,” says deep-sea ecologist Andrew Thaler. “We don’t have a very good pipeline to reuse these minerals after they’ve lived out their life in a piece of electronics resources . . . As we’re exhausting ore bodies on the surface, much like with oil exploration, we’re going deeper and deeper into the ocean to try to find these resources.”

There’s no federal law requiring e-waste to be recycled, and procedures nationwide are often fragmented and cumbersome; only 25 states have implemented legislation. In addition, e-waste recycling is largely privatized, placing its control in the hands of profit-driven businesses. In 2013, the New York Times reported that insufficient governmental oversight of the recycling programs of companies like Sony, Toshiba, and Apple had begotten fraud among recyclers who were buying paperwork to inflate the quantity of waste collected.. Third-party facilities’ recycling streams may also prove noxious; contracts with manufacturers and adherence to environmental protocol vary, affecting how much waste can actually be responsibly recycled, and businesses that depend on the market value of recyclable materials may opt to abandon their stockpiles or dump them in landfills when materials become obsolete.

“One growing problem is cathode ray tubes [which are commonly found in television and computer monitors from previous decades],” says Freyja Knapp, a PhD candidate in Environmental Science Policy & Management at the University of California, Berkeley. “The leaded glass is a real problem. The barium in them is a problem. [The] markets have declined for” many of the facilities that process CRTs, “and you see a lot of abandoned facilities with big piles of leaded glass just laying there.”

Courtesy: https://wasteadvantagemag.com

×

Quick Search

Advanced Search